
Software System Design and Implementation

The University of New South Wales

School of Computer Science and Engineering

Sydney, Australia

Gabriele Keller

COMP3141 17s1

Existentially Quantified Types

Scope of type variables

 data Tree a
 = Leaf
 | Branch a (Tree a) (Tree a)

the type variable a is in scope here

Scope of type variables

 data Tree a
 = Leaf
 | Branch b (Tree b) (Tree b)

we can only use type variables which are in scope

Scope of type variables

 data Length a = Length Double

 data Kilometer
 data Miles

 addLength :: Length a -> Length a -> Length a
 addLength (Length n) (Length m)
 = Length (n + m)

but we don’t have to use them (phantom types):

Scope of type variables

 data Tree a where
 Leaf :: Tree a
 Branch :: a -> Tree a -> Tree a -> Tree a

With GADT notation:

 data Tree a where
 Leaf :: Tree a
 Branch :: b -> Tree b -> Tree b -> Tree b

 which is equivalent to:

Scope of type variables

 data Tree a where
 Leaf :: forall a. Tree a
 Branch :: forall a. a -> Tree a -> Tree a -> Tree a

Type variables are implicitly ∀-quantified:

 data Tree a where
 Leaf :: forall a. Tree a
 Branch :: forall b. b -> Tree b -> Tree b -> Tree b

Scope of type variables

 data M where
 MC :: a -> M

• Type variables don’t have to appear in the result

 data M where
 MC :: forall a. a -> M

 data M = forall a. MC a

• or in non-GADT notation (needs language extension enabled)

Scope of type variables

 data M where
 MC :: a -> M

 xs :: [M]
 xs = [MC 5, MC True, MC “Why??”]

• We can define a list of values of type M:

unpackM :: M -> a
unpackM (MC x) = x

There is nothing we can do with values of type M!

Existential Types

• So, what is the actual type of unpackM?

unpackM :: M -> a

unpackM :: ∃a. M -> a

• Recall that type variables in Haskell are implicitly ∀-quantified, so the above
type is the same as

• But the real type of unpackM is (which can’t be expressed in Haskell):

unpackM :: forall a. M -> a

• This is why these types are called ‘existential types’

{-# LANGUAGE ExistentialQuantification #-}

data M = forall a. MC a

Existential Types

 data N where
 NC :: Show a => a -> N

 data P where
 PC :: (a -> String) -> a —> P

showNs :: [N] -> [String]
showNs ns = map show’ ns
 where
 show’ (NC x) = show x

showPs :: [P] -> [String]
showPs ps = map (\(PC f p) -> f p) ps

Example: Shapes

• Haskell:

 data Shape
 = Circle …
 | Rectangle …
 | Square …

 perimeter :: Shape -> Double
 perimeter (Circle …) =
 perimeter (Rectangle …) =
 …

 area :: Shape -> Double
 …

• easy to add new functions on the Shape type, less so to add more variants

Example: Shapes
• In OO-languages

• class Shape

• Circle, Rectangle, Square extend the class
• easy to add new variants, less so to add more functions

• Use classes and overloading to model this in Haskell?

 class Shape a where
 perimeter :: a -> Double
 area :: a -> Double

 data Circle = Circle …

 instance Shape Circle where
 perimeter (Circle …) = …
 area (Circle …) = …

Rank-n polymorphism

• Write a function which, given

• a polymorphic list constructor function a -> [a]

• and two values of possibly different types

• applies this function to both values and returns the lists

• Is this function type correct?

• Problem: we can write polymorphic functions in vanilla Haskell,
but we can express the fact that we want a polymorphic function
as argument

 foo f a b = (f a, f b)

Rank-n polymorphism

 ∀a. ∀b.(a -> [a]) -> a -> b -> ([a], [b])

• Problem: we can write polymorphic functions in vanilla Haskell, but we
can’t express the fact that we want a polymorphic function as argument

• Again, this is a scoping issue:

 ∀a. ∀b.(∀a. a -> [a]) -> a -> b -> ([a], [b])

versus

Rank-n polymorphism

• Rank-n polymorphism makes this possible

 ∀a. ∀b.(∀a. a -> [a]) -> a -> b -> ([a], [b])

rank-2 polymorphic function

• Rank-n polymorphism can be used to control what information a
function has access to

Remember the ST monad?

 newSTRef :: a -> ST s (STRef s a)
 readSTRef :: STRef s a -> ST s a
 writeSTRef :: STRef s a -> a -> ST s ()

 runST :: (forall s. ST s a) -> a

https://hackage.haskell.org/package/base-4.9.1.0/docs/Control-Monad-ST.html#t:ST
https://hackage.haskell.org/package/base-4.9.1.0/docs/Data-STRef.html#t:STRef
https://hackage.haskell.org/package/base-4.9.1.0/docs/Data-STRef.html#t:STRef
https://hackage.haskell.org/package/base-4.9.1.0/docs/Control-Monad-ST.html#t:ST
https://hackage.haskell.org/package/base-4.9.1.0/docs/Data-STRef.html#t:STRef
https://hackage.haskell.org/package/base-4.9.1.0/docs/Control-Monad-ST.html#t:ST

Existential Types and Rank-n types

• Note the difference:

 data M where
 MC :: a -> M

data M where
 MC :: forall a. a -> M

 data M = forall a. MC a

vs

 data M where
 MC :: (forall a.a) -> M

 data M = MC (forall a. a)

Error Handling

• Two types of errors:

• Fatal errors: indicates serious problems that an application should not
try to catch, as it requires external fix: program bug, stack overflow…

• Non-fatal errors: conditions that an application should catch and
handle.

• Further distinction

• Synchronous errors:

• raised as a direct consequence by the program itself

• Asynchronous errors:

• timeouts, user interrupt, resource exhaustion

Asynchronous error handling

• Asynchronous errors can happen at any time

• Can’t (in general) be prevented from occurring by checks in the program

• Sometimes necessary to mask such exceptions to ensure proper
clean-up

Synchronous error handling

• If a function can trigger a non-fatal error, it should in general be reflected
in the type:

 read :: Read a => String -> a
 readMaybe :: Read a => String -> Maybe a

• Compiler can detect incomplete patterns

-fwarn-incomplete-patterns

• If the function has to be partial for some reason, raise an appropriate
error, don’t just leave the patterns incomplete

Synchronous error handling

• How errors are handled depends on programming language:

• programming language support?

• possible to throw exceptions?

• exceptions declared in the type of a function/method?

• handling statically enforced?

