Software System Design and Implementation

Existentially Quantified Types

Gabriele Keller

The University of New South Wales
School of Computer Science and Engineering
Sydney, Australia

COMP3141 17s1 U SW

RSITY

YYYYYY e AUSTRALIA




Scope of type variables

data Tree a
Leaf
i Branch

a (Tree a) (Tree a) {

o

the type variabl& a is in scope here




Scope of type variables

we can only use type variables which are in scope

data Tree a
= Leaf
| Branch b (Tree b) (Tree b)

Not in scope: type variable ‘b’

E—




Scope of type variables

but we don’t have to use them (phantom types):

data Length a = Length Double

data Kilometer
data Miles

addLength :: Length a —> Length a —> Length a
addLength (Length n) (Length m)
= Length (n + m)




Scope of type variables

With GADT notation:

data Tree a where
Leaf : Tree a
Branch :: a —> Tree a —> Tree a —> Tree a

which is equivalent to:

data Tree a where
Leaf : Tree a
Branch :: b —> Tree b —> Tree b —> Tree b




Scope of type variables

Type variables are implicitly v-quantified:

data Tree a where
Leaf :: forall a. Tree a
Branch :: forall a. a —> Tree a —> Tree a —> Tree a

data Tree a where
Leaf :: forall a. Tree a
Branch :: forall b. b —> Tree b —> Tree b —> Tree b




Scope of type variables

 Type variables don’t have to appear in the result

data M where
MC :: a > M

data M where
MC :: forall a. a > M

- or in non-GADT notation (needs language extension enabled)

data M = forall a. MC a




Scope of type variables

data M where
MC :: a > M

- We can define a list of values of type M:

Xs :: [M]
xs = [MC 5, MC True, MC “Why??"]

Couldn't match expected type ‘t’' with actual type ‘a’
because type variable ‘a’ would escape its scope
This (rigid, skolem) type variable is bound by
unpackM :: a pattern with constructor
unpackM (MC MC :: forall a. a —> M,

in an equation for ‘unpackM’




=Xxistential Types

- S0, what is the actual type of unpackM?

unpackM :: M —> a

 Recall that type variables in Haskell are implicitly v-quantified, so the above
type Is the same as

- But the real type of unpackM is (which can’t be expressed in Haskell):

unpackM :: da. M —> a

 This is why these types are called ‘existential types’

{-# LANGUAGE ExistentialQuantification #-}

data M = forall a. MC a




=Xxistential Types

data N where
NC :: Show a => a —> N

data P where
PC :: (a —> String) > a — P

showNs :: [N] —> [String]
showNs ns = map show’ ns
where
show’ (NC x) = show x

showPs :: [P] —> [String]
showPs ps = map (\(PC f p) —> f p) ps




—xample: Shapes

 Haskell:

data Shape
= Circle ..
| Rectangle ..
| Square ..

perimeter :: Shape —> Double

perimeter (Circle ..) =
perimeter (Rectangle ..) =

area :: Shape —> Double

- easy to add new functions on the Shape type, less so to add more variants




—xample: Shapes

 In OO-languages
- class Shape

- Circle, Rectangle, Square extend the class
 easy to add new variants, less so to add more functions

- Use classes and overloading to model this in Haskell?

class Shape a where

perimeter :: a —> Double
area : a — Double
data Circle = Circle ..

instance Shape Circle where
perimeter (Circle ..)
area (Circle ..)




Rank-n polymorphism

+ Write a function which, given
- a polymorphic list constructor function a -> [a]
- and two values of possibly different types
- applies this function to both values and returns the lists

- Is this function type correct?

foo f a b= (f a, T b)

* Problem: we can write polymorphic functions in vanilla Haskell,
but we can express the fact that we want a polymorphic function
as argument




Rank-n polymorphism

* Problem: we can write polymorphic functions in vanilla Haskell, but we
can’t express the fact that we want a polymorphic function as argument

« Again, this is a scoping issue:

Ya. Vb.(a — [a]) — a —> b — ([al, [bl)

Versus

Va. Vb.(Va. a —=> [a]) —> a —> b —> ([al, [bl)




Rank-n polymorphism

« Rank-n polymorphism makes this possible

Va. Vb.(Va. a —> [a]) —> a —> b —> ([a], I[bl)

rank-2 polymorphic function

- Rank-n polymorphism can be used to control what information a
function has access to




Remember the ST monad?

newSTRef :: a — ST s (STRef s a)
readSTRef :: STRef s a —> ST s a
writeSTRef :: STRef s a -=> a —> ST s ()

runST :: (forall s. ST s a) — a



https://hackage.haskell.org/package/base-4.9.1.0/docs/Control-Monad-ST.html#t:ST
https://hackage.haskell.org/package/base-4.9.1.0/docs/Data-STRef.html#t:STRef
https://hackage.haskell.org/package/base-4.9.1.0/docs/Data-STRef.html#t:STRef
https://hackage.haskell.org/package/base-4.9.1.0/docs/Control-Monad-ST.html#t:ST
https://hackage.haskell.org/package/base-4.9.1.0/docs/Data-STRef.html#t:STRef
https://hackage.haskell.org/package/base-4.9.1.0/docs/Control-Monad-ST.html#t:ST

=Xistential Types and Rank-n types

* Note the difference:

data M where

MC it a > M data M where
MC :: (forall a.a) —> M

VS

data M where
MC :: forall a. a —> M data M = MC (forall a. a)

data M = forall a. MC a




—rror Handling

» Two types of errors:

- Fatal errors: indicates serious problems that an application should not
try to catch, as it requires external fix: program bug, stack overflow...

- Non-fatal errors: conditions that an application should catch and
handle.

* Further distinction
- Synchronous errors:
* raised as a direct consequence by the program itself
« Asynchronous errors:

 timeouts, user interrupt, resource exhaustion




Asynchronous error handling

« Asynchronous errors can happen at any time
- Can’t (in general) be prevented from occurring by checks in the program

- Sometimes necessary to mask such exceptions to ensure proper
clean-up




Synchronous error handling

- If a function can trigger a non-fatal error, it should in general be reflected
In the type:

read :: Read a => String —> a
readMaybe :: Read a => String —> Maybe a

- If the function has to be partial for some reason, raise an appropriate
error, don’t just leave the patterns incomplete

- Compiler can detect incomplete patterns

—fwarn—-incomp lete—-patterns




Synchronous error handling

* How errors are handled depends on programming language:
« programming language support?
* possible to throw exceptions?
 exceptions declared in the type of a function/method?

- handling statically enforced?




