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Existentially Quantified Types



Scope of type variables

  data Tree a  
    = Leaf 
    | Branch a (Tree a) (Tree a) 

the type variable a is in scope here



Scope of type variables

  data Tree a  
    = Leaf 
    | Branch b (Tree b) (Tree b) 

we can only use type variables which are in scope



Scope of type variables

  data Length a  = Length Double 

  data Kilometer 
  data Miles 

  addLength :: Length a -> Length a -> Length a 
  addLength (Length n) (Length m) 
    = Length (n + m) 
   

but we don’t have to use them (phantom types): 



Scope of type variables

  data Tree a where 
    Leaf   :: Tree a 
    Branch :: a -> Tree a -> Tree a -> Tree a 
 

With GADT notation:

  data Tree a where 
    Leaf   :: Tree a 
    Branch :: b -> Tree b -> Tree b -> Tree b 
 

 which is equivalent to:



Scope of type variables

  data Tree a where 
    Leaf   :: forall a. Tree a 
    Branch :: forall a. a -> Tree a -> Tree a -> Tree a 
 

Type variables are implicitly ∀-quantified:

  data Tree a where 
    Leaf   :: forall a. Tree a 
    Branch :: forall b. b -> Tree b -> Tree b -> Tree b 
 



Scope of type variables

  data M where 
     MC :: a -> M 

• Type variables don’t have to appear in the result 

  data M where 
     MC :: forall a. a -> M 

  data M = forall a. MC a 

• or in non-GADT notation (needs language extension enabled) 



Scope of type variables

  data M where 
     MC :: a -> M 

   xs :: [M] 
   xs = [MC 5, MC True, MC “Why??”]

• We can define a list of values of type M:

unpackM :: M -> a 
unpackM (MC x) = x

There is nothing we can do with values of type M!



Existential Types

• So, what is the actual type of unpackM? 

unpackM :: M -> a 

unpackM ::  ∃a. M -> a 

• Recall that type variables in Haskell are implicitly ∀-quantified, so the above 
type is the same as

• But the real type of unpackM is (which can’t be expressed in Haskell):

unpackM :: forall a. M -> a

• This is why these types are called ‘existential types’

{-# LANGUAGE ExistentialQuantification #-} 

data M = forall a. MC a



Existential Types

  data N where 
     NC :: Show a => a -> N 

  data P where 
     PC :: (a -> String) -> a —> P 

showNs :: [N] -> [String] 
showNs ns = map show’ ns 
  where 
    show’ (NC x) = show x

showPs :: [P] -> [String] 
showPs ps = map (\(PC f p) -> f p) ps



Example: Shapes

• Haskell:

  data Shape  
    = Circle … 
    | Rectangle … 
    | Square … 

  perimeter :: Shape -> Double 
  perimeter (Circle …) =  
  perimeter (Rectangle …) =  
  … 

  area :: Shape -> Double 
  …

• easy to add new functions on the Shape type, less so to add more variants



Example: Shapes
• In OO-languages


• class Shape


• Circle, Rectangle, Square extend the class
• easy to add new variants, less so to add more functions

• Use classes and overloading to model this in Haskell?

  class Shape a where 
     perimeter :: a -> Double 
     area      :: a -> Double 

  data Circle    = Circle …  

  instance Shape Circle where 
    perimeter (Circle …) = … 
    area      (Circle …) = … 



Rank-n polymorphism

• Write a function which, given 


• a polymorphic list constructor function a -> [a]  


• and two values of possibly different types


• applies this function to both values and returns the lists


• Is this function type correct?

• Problem: we can write polymorphic functions in vanilla Haskell, 
but we can express the fact that we want a polymorphic function 
as argument

   foo f a b = (f a, f b)  



Rank-n polymorphism

     ∀a. ∀b.(a -> [a]) -> a -> b -> ([a], [b])

• Problem: we can write polymorphic functions in vanilla Haskell, but we 
can’t express the fact that we want a polymorphic function as argument


• Again, this is a scoping issue:

   ∀a. ∀b.(∀a. a -> [a]) -> a -> b -> ([a], [b])

versus



Rank-n polymorphism

• Rank-n polymorphism makes this possible 

   ∀a. ∀b.(∀a. a -> [a]) -> a -> b -> ([a], [b])

rank-2 polymorphic function

• Rank-n polymorphism can be used to control what information a 
function has access to



Remember the ST monad?   

 newSTRef   :: a -> ST s (STRef s a)  
 readSTRef  :: STRef s a -> ST s a  
 writeSTRef :: STRef s a -> a -> ST s () 

 runST      :: (forall s. ST s a) -> a 

https://hackage.haskell.org/package/base-4.9.1.0/docs/Control-Monad-ST.html#t:ST
https://hackage.haskell.org/package/base-4.9.1.0/docs/Data-STRef.html#t:STRef
https://hackage.haskell.org/package/base-4.9.1.0/docs/Data-STRef.html#t:STRef
https://hackage.haskell.org/package/base-4.9.1.0/docs/Control-Monad-ST.html#t:ST
https://hackage.haskell.org/package/base-4.9.1.0/docs/Data-STRef.html#t:STRef
https://hackage.haskell.org/package/base-4.9.1.0/docs/Control-Monad-ST.html#t:ST


Existential Types and Rank-n types

• Note the difference:

 data M where 
     MC :: a -> M 

data M where 
     MC :: forall a. a -> M 

  data M = forall a. MC a 

vs

  
 data M where 
     MC :: (forall a.a) -> M 

  data M = MC (forall a. a) 



Error Handling

• Two types of errors:


• Fatal errors: indicates serious problems that an application should not 
try to catch, as it requires external fix: program bug, stack overflow…


• Non-fatal errors: conditions that an application should catch and 
handle.


• Further distinction


• Synchronous errors:


• raised as a direct consequence by the program itself


• Asynchronous errors:


• timeouts, user interrupt, resource exhaustion



Asynchronous error handling

• Asynchronous errors can happen at any time 


• Can’t (in general) be prevented from occurring by checks in the program


•  Sometimes necessary to mask such exceptions to ensure proper 
clean-up




Synchronous error handling

• If a function can trigger a non-fatal error, it should in general be reflected 
in the type:


 read       :: Read a => String -> a 
 readMaybe  :: Read a => String -> Maybe a 

• Compiler can detect incomplete patterns

-fwarn-incomplete-patterns

• If the function has to be partial for some reason, raise an appropriate 
error, don’t just leave the patterns incomplete



Synchronous error handling

• How errors are handled depends on programming language:


• programming language support?


• possible to throw exceptions?


• exceptions declared in the type of a function/method?


• handling statically enforced?


